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ANALYSIS OF NEUTRONIC SPACE-TIME EFFECTS IN LARGE LMFBR's

WITH THERMAL-HYDRAULIC FEEDBACK USING FX2-TH NUCLEAR REACTOR

KINETICS CODE AND MODE EXPANSION OF THE NEUTRON FLUX SHAPE FUNCTION

B. S. Yarlagadda
Argonne National Laboratory
Applied Physics Division
9700 South Cass Avenue

Argonne, Illinois 60439

ABSTRACT 

For a delayed critical transient in an LMFBR, the dependence of the local flux
tilt on the degree of heterogeneity in the core configuration was examined.
Using a mode expansion of the neutron flux shape function, decoupling the
resulting mode kinetics equations and utilizing the prompt jump approximation,
an expression for the i th harmonic local flux tilt was developed. According
to this expression, the i th harmonic local flux tilt + i (r,t) is inversely
proportional to the sum of the eigenvalue separation between the i th harmonic

and the fundamental mode and the delayed neutron fraction ( k--- - k— +	 and

is directly proportional to a time dependent factor Ti(t) and a space dependent

factor G.(). The modified eigenvalue separation (r-- -	 + 0) and G.(;) are
"i

known when the eigenvalues and eigenfunctions of the unperturbed reactor are
available. Thus if Ti(t), which depends upon the perturbation, varies little
In comparison with the modified eigenvalue separation from one core configura-
tion to another, a simple measure of the i th harmonic local flux tilt is
feasible. This flatness criterion for Ti(t) has been investigated by inserting
2O/sec ramp reactivity in three core configurations. During the transient, the
shape function was calculated with the FX2-TH code and Ti(r,t) and Ti(t) were
extracted using mode expansion of the shape function. The results of this
analysis are presented

INTRODUCTION 

The flux tilt or the change in the neutron flux shape function may be
significant during some delayed critical transients in Large Heterogeneous
Liquid-Metal Fast Breeder Reactors' (LMFBR's). The shape function may be
calculated accurately using the two-dimensional FX2-TH code 2 which takes into

account thermal-hydraulic feedback effects. However, during the design stage
when several reactor configurations with differing degrees of heterogeneity
and differing fuel compositions may be under consideration, transient analysis
studies with the FX2-TH code could be too expensive. Hence, a simple measure
of the flux tilt (albeit approximate) would be useful in the transient analysis
of heterogeneous fast breeder reactors. It has been shown previously395
that, in the asymptotic steady state, such a measure can be provided by the
fundamental to the first harmonic eigenvalue separation if the asymptotic
neutron flux may be approximated by a linear combination of the fundamental
and the first harmonic eigenfunctions of the unperturbed reactor. During the
transient, however, the expansion of the neutron flux shape function in terms
of the fundamental and the first harmonic eigenfunctions alone may not be

adequate. Hence, it is assumed that the shape function may be approximateo



2

by an expansion in terms of the fundamental mode and few lower harmonics.

The flux tilt T(;,t) is defined such that i 'th mode contribution to it is
equal to the product of the time dependent coefficient b1(t) in the expansion
of the shape function and a space dependent term G(r) which depends upon the
fundamental and i th harmonic eigenfunctions. Following the methods of Wade
and Rydin 3 and Kaplan 4 and using suitable approximations, it is shown in the
Appendix that b(t) is inversely proportional to a quantity which is the sum of
the i th harmonic eigenvalue separation from the fundamental and the effective
delayed neutron fraction	 with a time dependent proportionality factor
Ti(t). This modified eigenvalue separation reduces to the asymptotic form when
the i th harmonic eigenvalue separation is much larger than la. The modified
eigenvalue separations and Gi(itr ) are essentially known once the modes of the
unperturbed steady state reactor are evaluated. If the variation of Ti(t) in
going from one reactor configuration to another is relatively smooth in compar-
ison with the corresponding variation in the eigenvalue separation or Gi(r), a
simple measure of the local flux tilt may be feasible. Since evaluation of
Ti(t) in the presence of space dependent thermal-hydraulic feedback requires
knowledge of the shape function itself, the following empirical procedure was
adopted. After evaluating the modes of the initial steady state reactor, at
full power, the transient was followed using the FX2-TH code. The modal flux
tilt T i ( r,t) was evaluated during the transient and Ti(t) was extracted from
it by using a suitable normalization for the mode functions used in the evalu-
ation of Gi(r).

THEORY

The mode representation of a neutron flux shape function may be written as

2: b i (t) tpi ( rt ,E)	 (1)

where tpi ( it-,E) are the eigenfunctions of the unperturbed reactor in the initial
steady state and b(t) are the coefficients of the expansion.

Let the local power density in a small volume AV around the point 	 be

P(it ,t) = 7,71	 Mrrt +	 cp(t. +	 ddE	 (2)

and local relative power density be

R(;,t)	 P(It't)
P(rt,o)

where M(t) = M o + dM0 (t) is the fission operator.

Correspondingly, the total power and the relative total power are given by

P(t) = M(it ,E,t)	 (tt ,E,t)	 dE

eactor	

(4)

-"R 

fAV

(3)

and
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R(t)
P(t)
VT

Then, the local flux tilt in a small volume AV at point	 may be defined as

12(;,t)	 1.T(r,t) -

On substitution of the expressions for o(rt.,E,t), R(;,t) and R(t), Eq. 6 gives

b
i
(t)

T(;,t) =

o
b (t) G," - [1	 Go (;,t)]

=	 - [1 - Go (;,t)]	 (7)

where

f

M(; + ; ' ,E,t)	 + ; ' ,E) dE 11;:l

AV 
G.(;,t) -

1	
M
o
(; + ; ,E)

o	+
	 ,E) dE

An equation for the expansion coefficient b(t) is derived in the Appendix
and is given by

Ti(t)

1	 1
-	 +

0

where ko and ki are the multiplication constants in the fundamental mode and
the i th mode respectively, Ti(t) is a time dependent factor depending on the
mode dependent transition reactivity and precursor concentrations (see Eqs.
A-14, A-17 and A-30 in the Appendix), and ir3 is the effective delayed neutron
fraction. For the delayed critical transients under consideration in this
study, where the net reactivity inserted is not large, the coefficient of the
fundamental mode b 0 (t) in the expansion of the pape function may be assumed
to be close to unity and since M(r,E,t) and Mo(r,,O) may not differ signifi-
cantly from each other the time dependence in Gi(r,t) may be ignored. Hence
the i th harmonic local flux tilt may be written as

Ti(t)

Ti(;,t)	 1
-	 +

1
	  G(r)

CF
i	 0

R(t)

(5)

(6)

b1(t)

.1-AV

(8)

(9)

(10)
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METHODOLOGY 

Two-dimensional time-dependent multigroup diffusion equations are solved in

FX2-TH code 2 by use of the improved quasistatic method. 6 The thermal-hydraulic
model option used in this study solves the heat conduction equations in a one-
dimensional fuel pellet, gap, clad and coolant configuration. The code takes
into account feedback effects from changes in both the average fuel and the
average coolant temperatures. The neutronics solutions are based on an eight
energy group cross section set for four temperatures and on six delayed neutron
family data derived from the ENDF/B-IV data files.

Due to limitations of the FX2-TH code, it is assumed that boiling does not
occur at any point in the transient, that there is no distortion of geometry
and that fuel does not expand. The transient modeled for this study is due to
withdrawal, at power, of a single control rod located in the farthest ring from
the center of the reactor. The calculations were done in triangular geometry
with half core symmetry and the half-core was divided into about 60 thermal-
hydraulic regions.

For modal analysis of the neutron flux shape function during the transient,
eigenfunctions of the initial steady state reactor are needed. A macroscopic
cross section file for the materials in each thermal-hydraulic region was
generated using the converged steady state fuel and coolant temperature
distributions obtained in the steady state option of the FX2-TH code. With
the half core symmetry in triangular geometry, these cross sections were used
in the RINGIT code 7 to calculate the fundamental mode and the harmonics of the
initial steady state reactor. The RINGIT code makes use of a random guess for
the initial real and adjoint neutron flux distributions and calls the DIF3D
code 8 to calculate both the real and adjoint eigenfunctions for each harmonic.
When a harmonic has converged to the desired accuracy, that harmonic is
stripped from the flux guess and the code will proceed to the calculation of
the next harmonic using the stripped flux guess.

CORE CONFIGURATIONS 

The three core configurations used in this study are shown in Fig. 1. The
size of the reactors was 1000 MW(electric) and the degree of heterogeneity
ranged from homogeneous, through tightly coupled heterogeneous to loosely
coupled heterogeneous. In the tightly coupled core, one row of internal
blankets separates the core regions and in the loosely coupled core, two rows
of internal blankets separate the core regions. Both the heterogeneous cores
have a blanket at the core center. All cores were enrichment zoned, two zones
in the case of the homogeneous configuration and three zones in the case of
the heterogeneous configurations. The general reactor data and the fuel and
blanket pin descriptions on which the assembly descriptions are based are
given in Table I.

DISCUSSION OF RESULTS 

For each core configuration, the initial steady state neutron flux, fuel and
coolant temperatures were calculated with the steady state option in the FX2-TH
code. Four lower harmonics besides the fundamental mode were calculated at the
steady state for the configurations and they were numbered sequentially in the
direction of increasing eigenvalue separation. A schematic diagram of the
nodal lines and the eigenvalue separation from the fundamental mode of each

harmonic is given in Table II. In the three configurations considered here,



General Reactor Data 

Reactor power, AlW(electrtc)
Reactor power, SIW(thermal)
Therntal efficiency,
Core height, cm
Axial blanket thickness. cm
Reactor outlet temperature, •C
Reactor

1000
2740

36-5
101.6 (40 in.)
38.1 (15 in.)

499 (930T)
156 (280T)

	

Fuel Pin Design Data 
	

Blanket Assembly and Pin Design 

Fuel material
	

Pu-UO,	 Fuel material
	

UO,
Fuel/clad bond
	

Helium
	

Fuel/clad bond
	

Helium
Pin o.d., mm	 7.4 (0.290 in.)

	
Duct outside flat-to-flat, cm

	
1534 (6.040 in.)

Cladding thickness, mm	 035 (0.014 in.)
	

Duct wall thickness, mm
	

338 (0.141 in.)
pid ratio	 1.186

	
Number of pins
	

127
Wire spacer diameter, tuM	 135 (0.053 in.)

	
Pin o.d., vim	 11.94 (0.470 in.)

Plenum length, cm	 122 (48 in.)
	

Cladding thickness, rum
	

038 (0.015 in.)
Fuel smeared density, % TD

	
90
	

p/d ratio
	

1.070
Linear power, V./cm	 Fuel smeared density, V. TD	 90

	

Nominal peak
	

459 (14.0 kW/ft)
Average	 295 (9.0 kW/ft)

	

Fuel Assembly Design 
	

Blanket Volume Fractions

Number of pins	 271
	

Fuel (smeared)
	

0_5592
Assembly pitch, cm	 16.03 (6310 iii.)

	
Structure
	

0.1656
Duct outside flat . to . flat, cm	 1534 (6.040 in.)

	
Sodium
	

0.2752
Duct wall thickness, mm	 3-58 (0.141
Interassembly gap, nun 	 6.86 (0.270 in.)
Nozzle-to-nozzle 317,	 620 (90 psi)
Peak coolant velocity, m/s
	

7.9 (26.0 (t/s)

Core Volume Fractions

Fuel (smeared)
	

0.4238
Structure	 0.1969
Sodium
	 03793

5

TABLE I

Design Characteristics

the first and second harmonics have angular nodes and the third harmonic has a
radial node. The fourth harmonic in the loosely coupled core has one angular
and one radial node while the fourth harmonic in both tightly coupled and homo-

geneous cores has angular nodes only. For each harmonic, the eigenvalue
separation decreases as the degree of heterogeneity increases. For example,
the eigenvalue separation of the first harmonic in the loosely coupled core is
smaller approximately by factors of 1.5 and 3.0 than the first harmonic eigen-
value separation in the tightly coupled core and the homogeneous core
respectively. The contribution of each harmonic to the local flux tilt was

calculated at chosen intervals during the transient.

An overpower transient was initiated in each core configuration by the with-
drawal of a single control rod at a rate adjusted so as to insert 2/sec ramp
reactivity. Due to thermal-hydraulic feedback, the net reactivity insertion
rate was lower in each core configuration as shown in Fig. 2. This decrease
can be accounted for by the large negative reactivity contribution from the

Doppler feedback and a relat i vely smaller positive contribution from the
Coolant density feedback. The net reactivity inserted after 15 sec. was 6.00,
6.W and 7.0 respectively in the homogeneous core, the tightly coupled core

and the loosely coupled core. The relative reactor power is shown in Fig. 3

as a function of time for each core configuration. The time dependent local



TABLE H. Eigenvalue Separations in the Three Configurations

Harmonic
i

Schematic
Diagram of
Nodal Lines
in	 Half Core

_

Loosely Coupled Core Tightly Coupled Core Homogeneous Core

(I_
	

1
\ ki	 ko i

_	 1 +	 13,
\k i	ko	j

(I. _ I
\ ki	 koi

(I _ _L +
\ki	 ko	 r"/

(1 _	 1
\ ki	 ko i

(1 _ 1 + R
\ki	 ko	 -)

1

1
1
1

0.0098 0.0133 0.01465 0.0182 0.0309 0.0345

2
	  ANL 0 . 0254 0.029 0.0431 0.0467 0.0720 0.0756

3 Ahk 0.0435 0.0471 0.09163 0.0952 0.1004 0.104

4 Arikk 0,0739 0.0775

4 +\,- 14-,_
"I,

0.1018 0.1053 0.133 0.1363
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FIG. 2 TIME REWONSE OF THE NET REACEIVITY AS
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flux tilt and the modal contributions to it were calculated with the available
mode functions and the space and time dependent neutron flux shape function

calculated during the transient.

For displaying mode analysis results, the local flux tilt along an axis at a
specified time and the local flux tilt at a specified location as a function
of time were considered. The chosen axis passed through the core center and
through the center of the assembly which contained the withdrawn control rod.
The time chosen for displaying the flux tilt along the axis was 15 sec. since
it corresponded to the time at which the transient was terminated in the
loosely coupled core according to the 30% overpower constraint. The chosen
location in each core configuration to display the time dependence of the local
flux tilt was the point where the power density was maximum and it was found
that this location was about three assemblies away from the withdrawn control
rod. The local flux tilt at the location of the peak power density was
designated as • peak.

The flux tilt along the chosen axis at 15 sec. as calculated with the FX2-TH
code and the harmonic contributions to the flux tilt are shown in Figs. 4, 5
and 6 respectively for the loosely coupled core, the tightly coupled core and
the homogeneous core. In each configuration, the flux tilt along the axis is
a maximum at the location of the withdrawn control rod and at this point the
flux tilt is not represented well by the four harmonics. About three

assemblies away and beyond in all directions from the rod location, the lower
four harmonics represented the local flux tilt to within t 20% of the FX2-TH
value. The flux tilt along the axis is not symmetric but skewed towards the
right half and first harmonic alone cannot account for either the magnitude
or the shape of the flux tilt along the axis. The contributions of the third
and fourth harmonics to the local flux tilt are significant only around the
core centre. The second harmonic is the major contributor to the neutron flux
pile-up in the right half since it is a symmetric mode while the first harmonic
is an anti symmetric mode.

The time dependence of the local flux tilt at the location of peak power
density Tpeak( t), as calculated with FX2-TH code and the harmonic contribu-
tions to It are shown in Figs. 7, 8 and 9 respectively for the loosely coupled
core, the tightly coupled core and the homogeneous core. In each core
configuration, after about 2 sec. into the transient I peak and harmonic contri-
butions to it vary linearly with time. In each configUration, the first and
second harmonics are the major contributors toTpeak- In the loosely coupled
core, the lower four harmonics account for approximately 90% of the T peak
throughout the transient. In the tightly coupled core, T peak is well
represented by the four harmonics during the transient. In the homogeneous
core, the first and second harmonics are enough to account for T peak during
the transient and inclusion of third and fourth harmonic contribUtions over-
predicts the 'peak.

For the transient considered, the time dependence of the total flux tilt T(;,t)

and the i th harmonic flux tilt Ti(r,t) is independent of normalization of the

mode functions but Ti(t) and Gi(r) which are related to it through Eq. (10)
are dependent on the normalization of the fundamental mode and the i th har-
monic eigenfunction. The normalization of the mode functions was chosen such
that G (r) was unity at the left most point on the axis through the center of
the core and the withdrawn control rod. The values of Ti(t) derived using this
normalization at t = 15 sec. are shown in Table III for the three configurations.
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Ti(t)a at t = 15 sec
Harmonic

Loosely Coupled Core Tightly Coupled Core	 Homogeneous Core

1 2.35 x 10-3 2.28 x 10-3 3.11 . 10-3

2 1.7 2.175 . 10-3 1.6 x 10-3

3 6.5 x 10-4 7.18 x 10-4 10.7 x 10-4

4 0.8 x 10-3 3.48 x 10-3 3.88 x 10-3

11

Table III

Ti(t) Values in three c9nfigurations at t = 15 sec for 2e/sec
Ramp Reactivity Insertion (Gi(r) are normalized such that they are unity

at the left hand edge of the axis which passes through the withdrawn control rod)

aThese values are based on normalization used for Gi(;).

b
4th harmonic in loosely coupled core is of a different type than the 4th harmonic
in tightly coupled and homogeneous cores (see Table II).

Even though i th harmonic quantity Ti(t) is not constant between configura-
tions, it can be seen that its variation between them is not large. A
variation in TOO of about 65% occured for the third harmonic in the homo-
geneous core in comparison with the corresponding value in the loosely coupled
core. It is to be noted that the fourth harmonic in the loosely coupled core
is of a different type from the fourth harmonic in other configurations and
hence cannot be compared with them.

CONCLUSION 

For the three LMFBR core configurations considered and for the delayed critical
transient studied in them, the variation of the perturbation dependent quantity
Ti(t) for the i th harmonic at any time t from one core configuration to
another was not found to be large. Hence, for the same transient initiated
in a new core configuration, whose heterogeneity falls in the range considered
here, the local flux tilt may be estimated harmonic by harmonic when the eigen-
functions and eigenvalues of the new configuration in the unperturbed state
are available. The flatness criterion for Ti(t) between configurations
cannot be guaranteed, in general, for all possible transients and must be
ascertained before the relationship between the i th harmonic local flux tilt
and its modified eigenvalue separation from the fundamental is applied.
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APPENDIX 

SPACE-TIME KINETICS EQUATIONS FOR THE A-MODE EXPANSION COEFFICIENTS 

The time-dependent multigroup kinetics equations 9 are

6
af14,t)	 wit ,t ) _ (1-0 x F+4)(;,t) -	 Ai (xdi C i ( it ,t))V

at
i=1

Here tp is a column vector of neutron ,group flux, Ci(;,t) is the concentra-
tion of the precursors of type i at r and time t, V is a diagonal matrix

1
with elementswhere v

9
 is the neutron speed in group g, xp is a column

7f—a 
vector of the prompt neutron spectrum, xd . is a column vector of the i th
type delayed neutron spectrum, F + is a rg vector with elements vE fg where
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v is the number of neutrons emitted in fission and E fo is the macroscopic
fission cross section in group g, L is the loss operator, A i is the decay
constant of the i th type precursors and di is the corresponding delayed
neutron fraction.

Consider the unperturbed reactor in steady state with keff = ko = 1 and
with the unperturbed flux (1)0 (r,o) being given by a constant multiple of
the fundamental mode kPo(r) of the A-mode eigenvalue problem.

1
Lo*n = k—Mo'Pri

where Lo is the time independent loss operator, Mo is the corresponding

production operator and kn is the eigenvalue of the n th A-mode.

Let perturbations 61_0 (,t) and 61,10 (,t) be introduced in the reactor such
that

L(;,t) = L 0 (;) + 6L0 (;,t)	 (A-4)

and

M ( ,t )	 mo (;) + 6M0(;,t).

Defining

M = x F+(;,t)

and

xdi 
_
- X Xp

where x i is a diagonal matrix with elements xsgl	 = xdi,g ixp,g the kineticsy'
equations may be written in the form.

6

V aS(; '" + L(1)6t ,t) - [(1-(3) +	 d. x1] mgr,t)
at	 L—• 1

i=1

6	 6

+ E 6. x i m cp(it ,t) —E A. x
di
.C.(;

' 
t) = Q(;,t)1

1 = 1	 '1=1

and

a 
6(x.(;M+A.xx.(;0=a.r -1 )Mcp(;,t)

di i	 i di	 '	 '

for i=1,6

(A-3)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)
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(11,
n' 

E- a +01 -	
a1
. (x

i - I) 6M0
o	 o	 1=1 

p
n
(t) =

(*n, MA)

14

where I is the unit matrix.

It can be seen that in the steady state at t =o and for Q = o, the kinetics
equations (A-8 and A-9) reduce to the A-mode eigenvalue problem with k0=1
If the difference between the prompt and delayed neutron Spectra may be
neglected (i.e., xl=I).

Expanding the perturbed flux 0(i=,t) in A-modes of Eq. (A-3) we have

cp(;,t)	 Ai(t)

Selective substitution of Eq. (A-10) for 0(;,t) in Eqs. (A-8 and A-9),
multiplying the resulting equations on the left by the adjoint function 4,
integrating over the whole volume and noting k 0=1 gives 3,4

aA.(t)	
6

EA 	  + (
1 	 1 

+ 0 A
n
(t) -
	

AC (t).	 nj	 at	
-	

1 ni
n	 o	 i=1

6

= Pn (t) -	 Si(t)
	 Qn(t)

1=1

and

	  + A. C .(t) -
i
A
n
(t) = s.6 .(t) + f3.s .(t)	 for i=1,6

at 1	 n1	 1 ni	 1 ni

Twhere use is made of the inner product notation f x ydr = (x,y) with
xT being the transpose of x and

(V)
- 

V IV.)

A	 *
nj

M opn)

aC
ni

(t)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

*
(4)	 x o (p)

S 1 (t) -

(*n , MA)
(A-15)



*
( 19„. (x -1) M0)

6ni (t) - 	 -

(4'n' Mo4'n)

(*n , xdiCi(r:t))
C(t) - 	

4n,

15

(A-16)

(A-17)

(A-18)

and

*
Q(r,t))

Q(t) - n
, 

* m

For t -, if an asymptotic steady state is reached such that p 0 (o) and
S(-) are independent of time and if the difference between the prompt
and delayed neutrons may be neglected, we get the asymptotic value for

An( c ) which is

A()

	

	 1	 1
(Tn.. Vo )

	

P n (c.°)	

(A-19)

DECOUPLED QUASISTATIC SYNTHESIS APPROXIMATION 

In the guasistatic 6 approximation, we may represent (1)(;,t) exactly as

sirt ,t) = N(t)T(rt ,t)	 (A-20)

where N(t) is the amplitude function and '(,t) is the shape function
which is constrained by

*
(r,o) V v(;,t) 	 = 1.0 for all t.

Reactor 

In the quasistatic synthesis approximation, the shape function is

written as

ycit ,t) = 2: 'p.m

	

j	 J	 J

All coefficients b(t) are not independent since T(lt ,t) obeys Eq.

(A-21). Hence, knowledge of N(t) and b(t) where j 	 o is equivalent

to knowing all A(t) in Eq. (A-10) for the perturbed flux.

(A-21)

(A-22)
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We decouple the mode equations by setting A nj = o for iqj in Eq. (A-11).

This is a reasonable approximation in fast reactor systems where neutron
generation time ( A00 ) is of the order of 10 -7 . Further, we consider systems

with no external source (Q(t) = o) and neglect small terms 3.iSoi(t) and
doi(t) in Eqs. (A-11 and A-12). With these approximations, the mode kinetics
equations can be written as

3A(t)	
6

nn	 at
	  + ( 1	 1

T-- z + s) An (t) - E AC (t) = p
n
(t)A	 1 ni

n	 o	 i=1

and

aC
ni

(t)
at 	 + AC(t) - a

i
A
n
(t) = o for i = 1,6

when a small perturbation is introduced in a critical reactor such that
[bi(t)/b0(t)] << I and b 9 (t) =1.0, it can be shown that Eqs. (A-23 and A-24)
become the usual point kinetics equations for the amplitude function N(t) with
n =o. When the inserted reactivity is small ( po < 0.5$), prompt jump approxi-
mation 10 , 11 may be used to evaluate A(t). In the prompt jump approxima-

	

a A
n

	(t)
tion, we set Ann	

at	
- o and the mode kinetics equations become

1	 1	
6

(F - z + a) An (t) -E A.0 .(t) = pn(t)1 ni
n	 o

i=1

and

aC
ni

(t)
+ A.0 .(t) -

i
A
n
(t) = o for i = 1,6

at	 1 ni

Formally, we may write Eq. (A-25) in the form

6

	

Pn (t) + E	 C .(t)
ni

i=1 
A
n
(t) -

	

1	 1
C	 -	 + a)

	

n	 o

T(t)

1	 1

(V.
no

(A-23)

(A-24)

(A-25)

(A-26)

(A-27)
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The coupled set of equations (A-25 and A-26) can be solved analytically in
the one delayed neutron family assumption.

For n > o and i = 1,

dp
n

dA
n
(t)	 A	 A An (t) - 	 1	 1

0	
(.v

-11 
- k )ci0

where

0 a
o 
= 1+ 1	 1

-	 )VII V0

and A and o are one delayed neutron family parameters. Using the integrating
At
77,

factor e -o the solution of Eq. (A-28) may be written as

At

e 
-

'
A (t)	 [B + f dt

,	 At'

e	
[AP

n
(t') + dp (t)

-	 +	

n	
1	 1	 dt'
( k'n

1-1(t)

1	 1
(-	 -	 +

n	 o

where B is the integration constant.

From observation of Eq. (A-27) and Eq. (A-29), it can be seen that At) is
inversely proportional to the sum of the n th mode eigenvalue separation
from the fundamental and the effective delayed neutron fraction.

Since An(t) = N(t) b n (t), the expansion coefficient bn(t) is given by

T(t)	
1 

b(t)	
N(t)	 _	 a)

In(t)

1
(A-30)

1
(1F -	 13)
- n	 -o

(A-28)

(A-29)
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